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Abstract—This paper proposes a systematic strategy to effi-
ciently explore the design space of field-programmable gate array
(FPGA) routing architectures. The key idea is to use stochastic
methods to quickly locate near-optimal solutions in designing
FPGA routing architectures without exhaustively enumerating
all design points. The main objective of this paper is not as
much about the specific numerical results obtained, as it is
to show the applicability and effectiveness of the proposed
optimization approach. To demonstrate the utility of the proposed
stochastic approach, we developed the tool for optimizing routing
architecture (TORCH) software based on the versatile place and
route tool [1]. Given FPGA architecture parameters and a set
of benchmark designs, TORCH simultaneously optimizes the
routing channel segmentation and switch box patterns using the
performance metric of average interconnect power-delay product
estimated from placed and routed benchmark designs. Special
techniques—such as incremental routing, infrequent placement,
multi-modal move selection, and parallelized metric evaluation—
are developed to reduce the overall run time and improve the
quality of results. Our experimental results have shown that
the stochastic design strategy is quite effective in co-optimizing
both routing channel segmentation and switch patterns. With
the optimized routing architecture, relative to the performance
of our chosen architecture baseline, TORCH can achieve average
improvements of 24% and 15% in delay and power consumption
for the 20 largest Microelectronics Center of North Carolina
benchmark designs, and 27% and 21% for the eight benchmark
designs synthesized with the Altera Quartus II University In-
terface Program tool. Additionally, we found that the average
segment length in an FPGA routing channel should decrease
with technology scaling. Finally, we demonstrate the versatility
of TORCH by illustrating how TORCH can be used to optimize
other aspects of the routing architecture in an FPGA.

Index Terms—Design exploration, FPGA, routing architecture,
stochastic.

I. Introduction

STUDIES HAVE shown that programmable routing struc-
tures contribute the majority of field-programmable gate
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array’s (FPGA) silicon area, delay, and power consump-
tion [2], [3]. As such, optimizing routing architecture is the key
to improving FPGAs’ overall performance. However, as the
routing architecture of modern FPGAs becomes increasingly
complicated, the design space grows so large that exhaustive
exploration becomes computationally infeasible. Therefore,
most FPGA architecture studies either take an analytical
approach with simplifying assumptions [4], [5] or choose a
limited design space over which to perform empirical studies
[6], [7]. Although both these approaches provide important
design insights and valuable empirical results, exploring a
broader design space can conceivably produce even better
results. This paper proposes a strategy based on stochastic
methods to quickly locate a near-optimal design solution
without exhaustively searching the entire design space of
FPGA routing architectures.

In principle, our proposed stochastic method can be applied
to optimize many aspects of the FPGA routing architecture.
This paper, however, focuses on only two: routing channel
segmentation and switch box patterning (see Fig. 1), both of
which are essential to the overall FPGA performance [8], [9].
In the rest of this section, we first survey prior research on
optimizing routing channel segmentation and crossbar switch
patterns in FPGAs, then highlight several distinctions of this
paper, and finally summarize our contributions.

A. Routing Channel Segmentation

All FPGAs use routing channel segmentation, whereby each
routing track is divided into wire segments with different
length. Studies have shown that the mix of segment lengths
used in different routing tracks can have a significant impact
on interconnect performance [2], [10], and hence the overall
FPGA performance. Conceptually, using shorter segments
results in better routability and lower excess net loading, and
hence higher logic density and lower power consumption.
However, nets routed with only short segments pass through
more switch points, which typically results in higher delays.
On the other hand, longer segments can improve delay, but
at the expense of lower logic density and higher power
consumption due to the need for more routing tracks and
higher capacitive loading. It was further observed in [11] that
the utility of long segments decreases with complementary
metal-oxide-semiconductor (CMOS) technology scaling due
to the increase in wire parasitics relative to device parasitics;
and hence the average segment length should decrease with
scaling. Given these tradeoffs and observations, how should
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Fig. 1. Depiction of a island-style FPGA architecture. LB: logic block,
SB: switch box, CB: connection box.

routing channel segmentation be chosen to optimize the overall
FPGA performance?

The design of segmented routing channel was first dis-
cussed in [12] for row-based FPGAs. Assuming both random
origination points and geometrically distributed connection
lengths, El Gamal et al. showed how to construct a segmented
routing channel, while only being a constant factor wider than
a custom channel, achieves high routability. Using similar
statistical approaches, Zhu et al. [13] and Pedram et al. [14]
improved upon the results in [12] and corroborated the results
experimentally. In [15], this statistical approach was extended
to island-style FPGAs, where empirical distributions for hori-
zontal and vertical net segment lengths were first determined
by statistically analyzing placed and routed designs, and then
separate horizontal and vertical channel segmentations were
found according to the demand for each segment length.
While studies such as above provide important insights into
the design of routing channel segmentation, they have several
shortcomings: 1) the connection models used do not accurately
reflect the results produced by the actual placement and routing
tools; 2) delay and power consumption are considered only
indirectly; 3) buffered segments are not considered; 4) only
the channel part of the programmable routing is considered;
and 5) the results are technology independent.

To address these weaknesses, both analytical and empirical
methods were attempted. Studies [16] and [17] used a bipartite
graph matching approach and a multi-level matching-based
algorithm to construct a segmented channel for a given set
of connections from placed designs. More recently, several
studies attempted to experimentally optimize routing chan-
nel segmentation. For example, in [6], Betz et al. studied
segmentation design for island-style FPGAs implemented in
0.35 µm CMOS. Having placed and routed a set of designs
with VPR on FPGAs with various segmentations, they showed
that among channels of equal length segments, a channel with
only length-4 segments achieves the lowest routing area and
critical path delay. Moreover, a routing channel with a mixture
of length-4 and 8 segments can outperform a channel with
only length-4 segments. Similarly in [7], optimal uniform
segmentation was investigated experimentally for nanometer
FPGAs with single Vdd and programmable Vdd. Their results
have shown that using length-3 segments leads to the lowest
energy consumption as well as energy-delay-area product.
All these studies, however, considered only a small subset
of possible segmentations and therefore may have derived

the results far from the optimum. In contrast, our approach,
as discussed in Sections III and IV: 1) uses the connec-
tion models produced by the actual placement and routing
tools; 2) considers delay and power consumption computed
directly by placing and routing the chosen benchmark designs;
3) takes segment buffering into consideration by modeling the
interconnect at the gate level; 4) simulates the total routing
channel in computing delay, area, and power consumption;
and 5) incorporates the impact of device technology in circuit
simulation.

B. Switch Box Pattern Design

In modern FPGAs, switch modules (such as switch boxes
and connection boxes) form the connections between wire
segments and logic blocks, hence directly affect the routability
and area efficiency of an FPGA [2]. In particular, switches in
switch boxes allow intersected wire segments to inter-connect
horizontal and vertical routing channels. Commonly, a switch
box is constructed with crossbars and its design quality is
measured by its capability of successfully routing selected
target designs with fixed routing area [2]. In practice, although
full crossbar provides high routability, a sparse crossbar is
often selected because it can have significantly fewer switching
points, and therefore less area consumption. Naturally, in
designing switch boxes, it is desirable to achieve the required
routing capacity using the minimum number of switches, i.e.,
finding the optimal switch pattern.

The switch pattern inside a switch block has long been a
subject of intense research. For example, [18] discovered that
3 or 4 are optimal choices for the flexibility of a switch block
(Fs) when considering both routability and area efficiency,
which is later confirmed in [2] and [19]. Partially due to the
complexity of designing a optimal switch pattern, several the-
oretical studies have been conducted and numerous “perfect”
switch patterns with guaranteed-capacity were proposed, two
of which are depicted in Fig. 2(a) and (b) [20], [21] and both
use sparse switch pattern. More recently, the universal switch
box (USB) [22]–[24] was proposed as a specification for
routing capacity, i.e., routable for every set of 2-pin net routing
requirements. In these studies, the first theoretically optimal
(4, w)-USB which has flexibility 3w and 6w switches, where
w is the width of crossbar switch, was designed. Although
all these theoretic studies provide valuable insights to the
routability of various crossbar switch patterns, their results are
not very applicable in real-world FPGA architecture design
mainly because, in practice, the design of switch pattern
needs to be considered together with device technology, CAD
software, and specific circuit design. As a result, finding
“optimal” crossbar switch patterns in modern FPGAs is mostly
done by empirical methods [10].

This paper treats designing the switch pattern in a crossbar
as merely one aspect of optimizing the overall FPGA architec-
ture. Our approach is empirical and conceptually similar to the
method proposed in [11, p. 53] but with several distinctions:
1) while the study in [10] concentrated on finding switch
pattern that maximizes routability, our objective is to achieve
the overall optimal performance defined as the delay-power
product for a given set of benchmark designs; 2) the
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Fig. 2. (a) Orug-Huan guaranteed-capacity sparse crossbar switch. (b)
Azegami guaranteed-capacity sparse crossbar switch.

optimization of switch patterns in our paper is integrated with
the design of optimal routing channel segmentation, therefore
allows a more holistic view; and 3) the optimization algorithm
used in [10] is a greedy heuristic, while as in [25], a simulated
annealing procedure is used in our paper to facilitate the
exploration of the architecture design space.

C. Contributions

This paper advocates for a stochastic approaches in explor-
ing the routing architecture of FPGAs. To manifest such an
idea, we develop the tool for optimizing routing architecture
(TORCH), a software tool that co-optimizes both routing chan-
nel segmentation and crossbar switch patterns in island-style
FPGAs. Though it uses an experimental approach as in [6] and
[7], TORCH explores a much larger design space of possible
segmentations and switch patterns, hence can potentially yield
more optimal results. Part of this paper was published in [26].
However, this paper provides: 1) a new design strategy to
co-optimize both routing channel segmentation and switch
patterns by introducing a novel multi-modal move selec-
tion scheme; 2) a more thorough description of optimizing
routing channel segmentation; and 3) additional experimental
results for larger and more realistic designs generated by the
Quartus II University Interface Program (QUIP) package [27].

Given the parameters of an FPGA architecture and a rep-
resentative set of benchmark designs, TORCH can find a
set of optimized segmentation and crossbar switch pattern.
Because power and delay are the key performance metrics in
the design of FPGAs today, TORCH uses interconnect power-
delay product averaged over a number of benchmark designs
as a performance metric (also referred to as the objective
function in the literature). Routability is considered only as
a constraint and area is indirectly optimized through power
and delay. Overall, the optimization of TORCH is governed
by an iterative procedure based on simulated annealing. Each
iteration comprises: 1) adaptively and incrementally changing
the FPGA segmentation or crossbar switch pattern; 2) mapping

the benchmark designs to the modified FPGA using VPR; 3)
updating the performance metric; and 4) either accepting or
rejecting the new segmentation or the new crossbar switch
pattern. Our experiments have shown that performing com-
plete placement and routing of the designs at each iteration,
however, would make the total run time unacceptably high.
One contribution of this paper is to address the long run-time
problem of TORCH by developing the following techniques.

1) During each iteration of TORCH, because the change
in either segmentation or crossbar switch pattern is
relatively small, complete placements from scratch are
not necessary. In fact, total run time can be significantly
reduced by infrequently performing placement.

2) For the similar reason, the changes of routing channel
during each iteration only affects a small fraction of all
routed nets, hence complete routing from scratch are
not necessary. Again, total run time can be significantly
improved by incrementally ripping-up and rerouting
only affected nets.

3) To accelerate the simulated annealing procedure, our pa-
per adopts a multi-modal move selection scheme based
on Gibbs sampling, i.e., each random move chooses
among several move types dynamically instead of being
limited to a single move type. Our test results show that
this adaptation strategy can reduce run time by about
14% on average for the Microelectronics Center of North
Carolina (MCNC) benchmark circuits.

4) The process of ripping-up, rerouting, and performance
metric evaluation—the most computationally intensive
part of the procedure—can be performed independently
for each benchmark design. This means that the proce-
dure can be readily parallelized and run on a computer
cluster as discussed in Section VI. This technique,
although trivial, can be quite useful in practice.

TORCH outputs not only an optimized mix of track segment
lengths as in previous work [6] and [7], but also an optimized
ordering of the segmented tracks in the channel. Possibly
due to the sparse connectivity of the connection and switch
box designs, our experiments have shown that track ordering
can have a non-negligible effect on routability, and hence
delay and power consumption. We performed experiments that
show around a 5% variation in power and delay due to track
reordering.

Although TORCH allows switch boxes to have different
switch patterns, in this paper, we kept all switch boxes
identical to permit a repeated-tile style FPGA chip layout.

In what follows, Section II provides the background and
definitions needed for describing TORCH, followed by Sec-
tion III that explains its algorithm and implementation in
detail. Experimental results using TORCH and the 20 largest
MCNC designs are analyzed in Section IV. Finally, parallel
implementation of TORCH and experimental results using
larger designs are presented in Section VI.

II. Preliminaries

We choose an island-style FPGA logic fabric [2] as the
target architecture for TORCH, which consists of a 2-D array
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Fig. 3. Baseline FPGA architecture.

of logic blocks (LBs) interconnected via a segmented routing
architecture [28] (see Fig. 3). To a large extent, our paper as-
sumes a simplified version of a Virtex II style logic block com-
prising four logic slices, each of which contains two 4-input
lookup tables (LUTs), two flip-flops (FFs), and programming
overhead [28]. Our choice of cluster and LUT sizes follows the
results of [29], where under a fixed routing architecture (using
wire segment length-4 and 50% pass transistors and 50% tri-
state buffers in routing switches), an island-style FPGA with
the cluster size of 8 and LUT size of 4 was shown to consume
the lowest energy. The routing fabric comprises horizontal
and vertical segmented routing channels. In all delay and
power comparisons that follow, we set the number of routing
tracks to be 15% higher than the minimum required to avoid
excessive routing congestion as in [2], [6]–[31]. The design of
the connection box (CB) and switch box (SB) follows [2] and
the design of the switch point is MUX-based as described in
[32] (see Fig. 3). The channel segmentation for the baseline
FPGA comprises sets of staggered single, double, length-3,
and length-6 segmented tracks, each of which consists of two
unidirectional metal wires that can be connected via CBs only
to the inputs and outputs of the first and last LBs it spans.
Segments can be connected to each other via SBs.

For the purpose of clearly defining the input to TORCH,
we define an FPGA architecture A by the following.

1) The LB array size N × N.
2) The switch box width W , flexibility Fs; the number of

outputs that an input can connect to, and switch point
pattern PSB. In our experiments, we assume the total
number of switch points is Fs ×W and the initial switch
pattern P0

SB to be a subset switch point pattern [1].
3) The connection box flexibility Fc; the average number

of tracks that an LB input or output can be connected
to, and the connection pattern PCB.

4) A set of segment lengths L ⊂ {1, 2, . . . , N}.
5) A channel consisting of track bundles. Each bundle con-

sists of l staggered and uniformly segmented tracks. The
purpose of staggering is to provide uniform connectivity
to all LBs. Note that this track structure makes the
number of track bundles in a channel (Wtb) equal to
the switch box width (W). In most of the experiments
in Section IV, we only allow the following four types
of track bundles (see Fig. 4).

a) A single track bundle consists of one track with
length-1 segments.

b) A double track bundle consists of 2 tracks with
staggered length-2 segments.

Fig. 4. Example of interconnect segmentation.

c) A length-3 track bundle consists of 3 tracks with
staggered length-3 segments. Each length-3 track
can connect only to its leftmost and rightmost LB
inputs and outputs.

d) A length-6 track bundle consists of 6 tracks with
staggered length-6 segments. Each length-6 track
can connect only to its leftmost and rightmost LB
inputs and outputs.

Note that each longer segments (length-3, length-6) may
include switch-transistors and buffers to optimize its
delay.

6) A channel segmentation s consists of a set of Wtb track
bundles, where bundle i consists of li staggered tracks.

A. Area, Delay, and Power Estimation

In TORCH, evaluating the performance metric as defined
in (1) (see Section III) requires estimating the FPGA’s routing
area, delay, and power for each placed and routed benchmark
design at a given technology node. In this paper, we use the
same estimation methodology detailed in [11]. Specifically,
to estimate the FPGA routing area, TORCH decomposes an
FPGA tile consisting of an LB, a connection box, and a switch
box into components with the granularity similar to standard-
cell library elements, estimates the area of each component
in λ2 from a stick diagram and the Magic-8 rules, and finally
sums the areas of all component to obtain the tile area. Note
in TORCH, a more accurate area model can be employed if
more realistic circuit layout data are available. To estimate
delay and power, we use the transistor and metal wire RC
models shown in Fig. 5. This paper considers five technology
nodes: 130 nm, 90 nm, 65 nm, 45 nm, and 32 nm. Table I
presents the model parameters estimated for these technology
nodes using the Berkeley Predictive Technology Models and
HSPICE [33], [34].

The interconnect delay for a placed and routed design
can be defined either as the geometric average of all its
pin-to-pin net delays, or as the critical path delay. In
fact, our numerical results have shown that the choice of
delay type can significantly skew the final results. Be-
cause it is generally believed that critical-path delay better
matches the user’s perception of FPGA delay performance,
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Fig. 5. RC circuit model for CMOS transistors and metal wires. Cgate is the
equivalent transistor gate capacitance (in fF/�), Cdiff is the transistor diffusion
capacitance (in fF/µm), R� is the transistor channel resistance (in �/�), Cw

is the metal wire capacitance (in fF/mm), Rw is the metal wire resistance (in
�/mm), and Lw is the length of a metal wire.

we use critical-path delay as the delay performance metric in
this paper.

As in [11], we first use Elmore RC models to size all
the devices in a switch box and determine the number and
sizes of buffers for the length-3 and length-6 segments at each
technology node. Then using a modified version of the VPR
delay calculation function, net delays are computed.

Our power estimation method is largely based on the
mixed-level power model proposed in [5], which consists of
both dynamic and static components. For dynamic power, we
consider two main components: switching power and short-
circuit power. We define the total switching power for a placed
and routed design as the total equivalent capacitance of all
nets, computed with an extension to VPR as in [11]. Short-
circuit power is another type of dynamic power that occurs at
a signal transition and is generally hard to estimate. TORCH
assumes the ratio between short-circuit power and switching
power to be constant and uses SPICE simulation to determine
this ratio. Prior to the TORCH run, we simulate interconnect
buffers with different sizes and load capacitances to obtain
the dynamic power per output signal transition. Estimating
static power is even more challenging. TORCH ignores the
reverse-biased leakage power for the lack of accessible device
model and only considers the sub-threshold leakage power.
As in [11], we use SPICE simulation to obtain the average
leakage power, assuming all the input vectors have the same
probability of occurrence and either Vdd or GND as the input
signals in the simulation. To simplify the TORCH estimation,
all possible input vectors are mapped into eight typical vectors
and SPICE simulation is performed only for these eight typical
vectors to build macromodels.

III. TORCH

The input to TORCH is as follows.

1) An initial FPGA architecture A, which includes the
dimension N, the logic design of each logic block, the
number of LUTs in each logic block, and so on.

2) The switch box width W(=Wtb), flexibility Fs, the con-
nection box flexibility Fc, and the connection pattern
PCB.

TABLE I

Transistor and Metal Wire Parasitics for Five Technology

Nodes

130 nm 90 nm 65 nm 45 nm 32 nm

Vdd (V) 1.3 1.2 1.1 1.0 0.9

Leff (nm) 49 35 24.5 17.5 12.6

Cgate (fF/µm) 1.73 1.59 1.32 1.24 1.11

Cdiff (fF/µm) 1.13 1.09 1.08 1.03 1.01

R� (k�/ �) 32.61 22.70 18.68 16.76 15.88

Rw (�/mm) 174 244 448 1527 2444

Lw (nH/mm) 1.68 1.71 1.76 1.89 1.93

Cw (fF/mm) 210 212 177 157 168

3) A baseline segmentation s0. The choice of the baseline
segmentation is arbitrary and is needed only to normalize
the power and delay for each benchmark design. In the
rest of this paper, we refer to this baseline segmentation
as the Virtex-like segmentation. An example of such
Virtex-like segmentation is given in Section IV.

4) A baseline cross switch pattern P0
SB. The initial switch

pattern is assumed to be subset switch point pattern [1].
5) Technology node parameters. These include interconnect

device sizes and RC parameters for delay and power
calculation in VPR (see Table I).

6) A set of m benchmark designs B.
The output of TORCH is an optimized segmentation s∗ and

an optimized crossbar switch pattern P∗
SB.

Given the FPGA architecture A with a segmentation s and
a crossbar switch pattern x, VPR generates the routing graph
g(A, s, x) [1]. Given g, the technology node parameters, and
B, the performance metric of TORCH is defined as follows.
Let (pb,0, db,0) be the power-delay pair for design b mapped
to the FPGA with the Virtex-like segmentation, and (pb,s, db,s)
be the power-delay pair for design b using segmentation s.
For power and delay exponents α, β ≥ 0, the performance
metric is

c =
1

m

m∑

b=1

(
pb,s

pb,0

)α

·
(

db,s

db,0

)β

. (1)

We are now ready to describe TORCH in detail. A flow
diagram of TORCH, based on simulated annealing, is given
in Fig. 6 and further described in Algorithm 1. First, the
benchmark designs are placed and routed using VPR in
the FPGA with the Virtex-like segmentation and the initial
switch box pattern. The delay and power estimates {(pb0, db0 :
b = 1, 2, . . . , m} are computed as the initial value of the
performance metric. After an initial temperature for simulated
annealing is set, a random perturbation to segmentation or
switch-box pattern is chosen and its routing graph is generated.
The designs are then incrementally placed and routed assum-
ing the newly generated routing channel and the performance
metric is re-evaluated. If the metric value is reduced, the new
segmentation or crossbar switch pattern is accepted, otherwise
it is accepted with a probability that depends on the increase
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Fig. 6. Flow diagram of Algorithm 1. Box with gray triangle denotes control
block.

in the value of the metric and temperature. The process of
changing segmentation or crossbar switch pattern, computing
its performance metric, and accepting or rejecting it is repeated
until InnerLoopCriterion is false. After exiting the inner
loop, temperature is reduced and the process is repeated
until the ExitCriterion becomes false. TORCH then
outputs the final segmentation and the final crossbar switch
pattern. Not surprisingly, the most computationally intensive
part of TORCH is the subroutine EvaluateCost(), which
involves performing placement/routing and computing delay
and power for all benchmark designs. Fortunately, because
these evaluations are completely independent for different
designs, the subroutine of this nature is often called “embar-
rassingly parallel” and therefore can be readily parallelized,
which significantly reduces the total run time as illustrated
in Section VI. Although this parallelizing technique may be
trivial, it is quite useful in design practice. The following
describes in detail the key functions of Algorithm 1.

A. NewSegmentationOrSwicthPattern()

When generating candidate moves in simulated annealing,
it is essential that after a few iterations of the algorithm, the
current state should have much lower energy than a random
state in order to ensure the optimization’s efficiency. Therefore,
as a general rule, one should skew the move generating
process toward candidate moves where the energy of the
destination state is likely to be similar to that of the current
state. Unfortunately, this heuristic—the main principle of the
Metropolis-Hastings algorithm—tends to exclude “very good”
candidate moves as well as “very bad” ones; however, the
latter are usually much more common than the former, so
the heuristic is generally quite effective [35]. Intuitively, at

Algorithm 1 TORCH

1: s ← RandomSegmentation()
2: T ← InitialTemperature()
3: g ← g(A, s)
4: freeze count ← 0
5: while ( ExitCriterion() is FALSE) do
6: changes ← 0
7: trials ← 0
8: c ← EvaluateCost(g,B)
9: while ( InnerLoopCriterion() is FALSE) do

10: trials ← trials + 1
11: snew ← NewSegmentationOrSwicthPat-

tern(s)
12: if FullPlacementCriterion() is TRUE then
13: perform full placement & routing
14: else
15: IncrementalRoute(g(A,Snew), B)
16: end if
17: �c ← EvaluateCost(g(A, Snew)) - c

18: if �c < 0 /*downhill move*/ then
19: changes ← changes + 1
20: s ← snew

21: g ← g(A, S)
22: c∗ ← EvaluateCost(g(A, Snew))
23: end if
24: if �c > 0 /*uphill move*/ then
25: r ← Random(0, 1)
26: if r < e− �c

T then
27: s ← snew

28: g ← g(A, S)
29: end if
30: end if
31: end while
32: T ← UpdateTemperature()
33: if c∗ changes then
34: freeze count ← 0
35: end if
36: if changes

trials
< 0.01 then

37: freeze count ← freeze count + 1
38: end if
39: end while

high annealing temperature, distant moves are more likely
to improve the solution. While at low temperature, close-by
moves are expected to be far more effective. Obviously, during
the process of annealing, depending on the temperature and
the current landscape of solution space, certain move types
tend to be noticeably more effective than others. The challenge
is of course to select the most effective move types without
prior knowledge of the global solution and the overall solution
space.

In the following, we develop a heuristic technique to skew
the generated random moves toward more effective ones. We
call this method multi-modal move selection to reflect the fact
that during each iteration, instead of limiting to only one move
type, we stochastically choose one from a candidate pool of
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several choices. This technique is especially important when
co-optimizing several aspects of FPGA routing architecture
simultaneously. Specifically in TORCH, the move is chosen
according to the success rate of all candidate move types. In
this paper, we consider two move types: new segmentation
and new switch pattern, while the original VPR, to our knowl-
edge, considers only single move type. More importantly, we
propose a robust adaptive strategy to automatically select the
“best” move type throughout the annealing procedure based
on Gibbs sampling [36]. By “best” we mean the chosen move
type will yield the best results on average in a probabilistic
sense.

Our proposed multi-modal move selection, although fairly
intuitive, has its roots in the theory of Gibbs sampling—a
special case of Metropolis-Hastings algorithm. The key obser-
vation of Gibbs sampling is that given a multivariate distribu-
tion it is simpler to sample from a conditional distribution than
to marginalize by integrating over a joint distribution, which is
often not known explicitly, whereas the conditional distribution
of each variable is known. The Gibbs sampling algorithm
generates an instance from the distribution of each variable in
turn, conditional on the current values of the other variables.
In this paper, during the process of simulated annealing, in
order to obey Metropolis-Hastings criterion (the underlying
law to generate acceptance probability in simulated annealing),
the correct choices of various move types have to obey some
implicit probabilistic distribution. In other words, when having
multiple choices of move types, according to Gibbs sampling
theory, the only intuitive/applicable way is to individually
determine the acceptance probability for one particular move
while fixing other moves. The theoretic framework of Gibbs
sampling may seem to be overkill in our case, but will prove
to be invaluable when constructing more sophisticated multi-
modal move selection than ours.

We now describe the implementation details of multi-modal
move selection. Let mi ∈ M, i = 0, 1, · · · , n − 1 be one of n

possible move types. Initially, we draw a move from M with
equal probability 1

n
among all move types. As the annealing

process progresses, we keep track of the acceptance rate ai of
each move type mi. During each iteration, each move is draw
according to the following probability:

p(mi) =
ai∑n−1
i=0 ai

.

In this paper, n equals 2 and possible moves consists of
new segmentation and new cross switch pattern. Fig. 7 shows
how the segmentation is changed in each trial. Note that this
is often referred to as the candidate generator procedure. One
track bundle is selected at random and its segment length is
chosen according to the state diagram in the figure. Except for
the shortest and longest segments, the track bundle segment
length is increased or decreased to one of the two nearest
segment lengths with equal probability.

Optimizing switch patterns in an FPGA switch box has
long been a topic of extensive research. For example, the
routability of common switch block styles, such as the dis-
joint switch blocks shown in Fig. 2, was validated through

Fig. 7. State transition diagram for generating new segmentation in
Algorithm 1.

extensive experimentation. Our method to optimize switch
patterns in TORCH is similar to the one discussed in [10],
but with several differences. First, although both TORCH
and [10] perform iterative optimizations for switch patterns,
[10] uses greedy scheme and TORCH adopts an annealing-
based approach. More importantly, in TORCH, the process of
optimizing switch-box patterns is intertwined with optimizing
routing channel segmentation, while in [10], the optimization
of switch patterns is considered independently. Additionally,
Hamming distance was used as the cost function in [10],
while TORCH uses the normalized delay-power product over
20 largest MCNC benchmark circuits. Finally, while in [10],
swap candidates are determined by the random selections of
two input wires, in TORCH, each random swap for optimizing
switch pattern is generated by stochastically moving a switch
point. Specifically, a new crossbar switch pattern is generated
with random swapping. Assuming the position of each switch
point is denoted by (i, j), where i, j = 0, 1, · · · , N −1, and all
N × N possible positions of switch points is partitioned into
two sets S0 and S1 consisting of unoccupied and occupied
crossbar switch points, respectively. Each candidate move is
generated by swapping two positions randomly picked within
S0 and S1. Our early attempts have shown that unconstrained
random swaps do not perform satisfactorily and too many
rejected moves. Instead, we developed a constrained strategy
for move generation where, during each iteration, we first
randomly pick a switch point and then swap it with its
closest empty spot in the switch box. Should several candidate
positions exist, one is chosen at random. Fig. 8(a) and (c)
depicts a N = 6 and Wtb = 1 crossbar switch before and after
the random swapping of a switch point. Furthermore, Fig. 8(b)
and (d) illustrates their routing graphs accordingly.

B. ExitCriterion() & InnerLoopCriterion()

ExitCriterion() makes sure the freeze count is less
than 50 000. InnerLoopCriterion() is true if trials <

TRIALS and changes < CHANGES. Both constants TRIALS
and CHANGES are related to the problem size. We set TRI-
ALS and CHANGES equal to 10W and 0.01W , respectively,
where W is the SB width.

C. IncrementalRoute()

Incremental routing does not affect TORCH’s correctness
but significantly impacts its run time. This is because per-
forming complete routing for each trial in TORCH is often
computationally prohibitive. Incremental routing is possible
because the change in either segmentation or switch pattern
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Fig. 8. Diagrams of switch pattern and routing graph changes. (a) and
(b) Before a random move. (c) and (d) After a random move.

Fig. 9. Switch patterns for a Wtb = 56, Fs = 3 switch box at 45 nm
(a) before and (b) after the TORCH optimization.

from one trial to the next is relatively small and typically
affects only a small fraction of the routed nets. By only
ripping out the affected nets and rerouting them using the new
segmentation or the new switch pattern, we save a significant
amount of computing time.
IncrementalRoute() uses the ripping and rerouting

nets part of VPR [2] and is described in Algorithm 2. The
definitions of the variables used in Algorithm 2 are as follows.

1) RNk is the set of routing graph nodes associated with
track bundle k in all channel.

2) ANk is the set of nets affected by the change of track
bundle k segmentation.

3) Aij is the criticality of the connection from the source of
net i to one of its sinks j, which is computed according
to (4.13) in [31, p. 83]. To save the total run time, Aij is
only updated after each full routing by analyzing timing
of the entire circuit.

4) dn is the intrinsic delay of routing node n.
5) pn is the present congestion cost of node n, which is

updated whenever any net is ripped and rerouted. We use
the same formula as in [31, p. 78, (4.4)] to compute pn.

Algorithm 2 Incremental Routing Algorithm

1: RNk ← ∅
2: for all nodes n in the whole routing graph do
3: if node n is in the routing track k then
4: RNk ← RNk ∪ node n

5: end if
6: end for
7: affected nets ANk ← ∅
8: for all nets p in the previously routed circuit do
9: if net p contains a routing node that belongs to RNk

then
10: ANk ← ANk∪ net p

11: end if
12: end for
13: for all net i in ANk do
14: Aij ← 1 for each sink j

15: end for
16: while shared routing nodes exist do
17: for all nets i in ANk do
18: rip up routing tree RTi

19: initialize the queue PQ

20: for all sinks tij do
21: enqueue each node n in RTi at costs Aijdn to PQ

22: while tij is not found do
23: dequeue node m with the lowest cost from PQ

24: for all fanout node n of m do
25: if node n is unseen then
26: mark node n as seen
27: enqueue n to PQ with the cost of Aijdn +

(1 − Aij)dnpn

28: end if
29: end for
30: for all node n in the routed path tij to sj do
31: update the cost of node n

32: add n to RTi

33: end for
34: end while
35: end for
36: mark all nodes in PQ as unseen
37: update Aij for net i and set it to the value computed

from the last timing analysis
38: end for
39: end while

However, specific to TORCH, we start with the penalty
ratio pn = 0.5, and double its value only after each time
of re-routing all nets in ANk.

Algorithm 2 first finds RNi (lines 1 to 6). Next, it constructs
ANi (lines 7 to 12). The nets in ANi are then routed using
routines from VPR [1].

IV. Experimental Results

This section describes our experiments using TORCH and
the largest 20 MCNC benchmark designs.
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TABLE II

Baseline FPGA Parameter Values

Tile Width Array Size LB Buffer LB Inputs
L N × N Size, b Ki

4100λ 64 × 64 4 32

LB Outputs SB Width Density CB Flexibility
Ko W d Fc

8 56 3 0.5

Segment Type Single Double Length-3 Length-6

Number of tracks 25 28 24 54

TABLE III

Pass-Transistor and Buffer Sizes for FPGA Interconnects for

Different Technology Nodes

CB Single Double Length-3 Length-6

Tech. bi, bo x, y ml ml, lN , nN

32 nm 6, 6 8, 7 10 12 12, 1, 8 14, 2, 11

45 nm 5, 5 7.7 9 10 11, 1, 8 14, 2, 10

65 nm 4, 4 6, 6 8 9 11, 1, 7 13, 2, 9

90 nm 4, 5 6, 5 8 9 10, 1, 7 12, 2, 8

130 nm 4, 4 5, 4 6 8 9, 1, 6 11, 1, 7

A. Experimental Setup

Table II lists the key architecture parameter values for the
baseline FPGA used in the performance comparisons. The
channel width W = 25+28/4+24/3+54/6 = 56 is determined
by running experiments with all segment lengths at one.
Table III lists the pass-transistor and buffer sizes used for each
of the five technology nodes. In this table, all transistor sizes
are in the unit of minimum transistor width corresponding to
their technology nodes. Specifically, bi denotes LB input buffer
size, bo denotes LB output buffer size, x denotes pass transistor
(PT) size from LB output to CB, and y denotes PT size from
interconnect to LB input. Additionally, lN is the number of
buffers inserted in a long interconnect, ml is the switch point
(SP) buffer size for interconnect of length l, and nN is the size
of inserted buffer in long interconnect.

It is well-known that selecting the proper switch size is an
important step in creating a low-delay, area-effective intercon-
nect in an FPGA. In order to obtain proper sizes for switches
in each interconnect, we simulated the end-to-end delay of
a buffer driving one to eight wires connected in series using
pass transistors, which represents a wide range from only-
buffered wires to primarily pass-transistor connected wires.
For each interconnect length, we then choose the best pass-
transistor size that produces the best delay-area values. This
methodology is similar to the one outlined in [32].

Simulated annealing parameters such as starting temperature
and cooling rate can have a significant impact on the quality
of results. The assumed values of these parameters, given in
Table IV, are chosen based on experiments. Further validation
of these choices is provided in Section VI.

TABLE IV

Parameter Values of Simulated Annealing Cooling Schedule

Parameter Value

Starting temperature T 100

Reducing rate δ 0.95

Moves at each temperature M 200 × routing channel width

As discussed earlier, TORCH run time can be improved
by using incremental routing and infrequent placement. To
quantify the improvements in run time and the effect of using
these techniques on the quality of results, we ran TORCH
with the 20 largest MCNC benchmarks, 45 nm technology,
and α = β = 1, i.e., equal weight on delay and power in the
performance metric, for three scenarios.

1) Using full placement and routing at each iteration—each
time when the routing channel segmentation or switch
point pattern changes, the placement and routing for
each benchmark circuit will be rerun from scratch.

2) Using full placement but only incremental routing at
each iteration—each time when the routing channel seg-
mentation or switch point pattern changes, the placement
will be rerun from scratch while the re-routing will
only be performed on affected nets for each benchmark
circuit.

3) Using placement once every 20 iterations and incremen-
tal routing—when the routing channel segmentation or
switch point pattern changes, the re-placement is only
performed every 20 iterations while re-routing for each
benchmark circuit will only be performed on affected
nets for each benchmark circuit. Note, if any benchmark
circuit becomes unroutable due to infrequent placement
and/or incremental routing, the corresponded routing
channel segmentation or switch point pattern change will
be discarded.

The experiments were performed on a PC with 2.6 GHz
AMD Athlon(tm) 64×2 Dual Core Processor 5200+ with 2 GB
memory. Table V summarizes run times and final normalized
average delay and power values relative to using the Virtex-
like segmentation for the three scenarios. Note that incre-
mental routing reduces the run time by about seven times.
Combined with infrequent placement, the improvement in run
time is about 30 times. As can be seen in the table, these
improvements in run time are achieved with little degradation
in the quality of results. As we discuss in Section VI, addi-
tional speedup with no further degradation in the quality of
results can be obtained by parallelizing the EvaluateCost
function.

B. Optimization Results

Fig. 10(a)–(c) shows the improvements in interconnect
power and delay using incremental routing and infrequent
placement for the 20 benchmark designs. The average reduc-
tion in delay and power relative to the Virtex-like segmentation
are between 9% and 32% and between −2% and 33%, respec-
tively. The average improvements relative to the all length
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Fig. 10. Improvements in power and delay optimizing only routing channel segmentation. (a) Performance improvements relative to Virtex-like segmentation.
(b) Performance improvements relative to all-one segmentation. (c) Performance improvements relative to 83% length-4 and 17% length-8 segmentation [6].

TABLE V

Run Time and Final Optimization Results for Full Placement

and Routing (FP+FR), Full Placement and Incremental Routing

(FP+IR), and Infrequent Placement and Incremental Routing

(IP+IR)

FP+FR FP+IR IP+IR

Run time (s) 152 362 23 231 5634

Normalized delay 0.72 0.76 0.77

Normalized power 0.83 0.85 0.86

one segmentation are 25% and 8%, respectively. Because
critical-path design is an important performance metric for
FPGA implementation, we also added the critical-path-delay
and power product as an additional optimization objective. Our
new results have shown that this new objective function results
in quite similar routing channel segmentation.

Fig. 10(a) and (b) shows the improvement in interconnect
power and delay for the 20 designs using the TORCH seg-
mentation, relative to the Virtex-like segmentation and the
all one segmentation, for 45 nm technology and α = β = 1,
i.e., equal weight on delay and power in the performance
metric. The average reduction in delay and power relative to
the Virtex-like segmentation are 24% and 15%, respectively.
The improvements relative to the all one segmentation are
27% and 9%, respectively. Comparing Fig. 10(a) with (b),

our results suggest that shorter segmentation tends to result in
better power performance but worse delay performance (note:
larger improvements due to TORCH optimization indicates the
original design is worse.). To further evaluate our method, we
compare our optimized segmentation with the results in [6].
As shown in Fig. 10(c), our segmentation has 10% and
13% better average delay and power consumption over the
reported segmentation in [6] (83% length-4 and 17% length-8
segmentation).

To illustrate the effectiveness of co-optimizing both routing
channel segmentation and switch point pattern relative to
Virtex-like segmentation, we first use TORCH to co-optimize
both, then use the resulting FPGA architecture to place and
route all 20 MCNC designs, and finally compute its im-
provements relative to Virtex-like segmentation. Comparing
the results in Fig. 11 with that of Fig. 10(a), we observe that
co-optimization results in about 5% in average net delay, 7% in
critical-path delay, and 6% in power consumption on average.

Finally, to test whether or not TORCH explores the archi-
tecture space well, we run TORCH ten times, each time started
with a randomly generated routing channel segmentation and
switch point pattern. More specifically, for routing channel
segmentation, we randomly picked the ratio of each particular
segment length; for switch point pattern, we started with
the diagonal pattern and then randomly performed 20 swaps.
Our results have shown that the resulted FPGA architecture
from each run does differ, but the final performance(delay
and power) of these runs are within 3% in difference. More
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Fig. 11. Improvements in power and delay optimizing both routing channel segmentation and switch pattern relative to Virtex-like segmentation.

Fig. 12. (a) Segmentation results for different technology nodes. (b) Average
segment length for different technology nodes.

interestingly, the routing channel segmentation resulted from
these runs typically differ in their exact arrangement but almost
the same in terms of the ratio of different segment length.

C. Technology Scaling

In [11], we observed that average segment length should
decrease with technology scaling. This decrease is expected
because of the significant increase in wire parasitics relative to
transistor parasitics with technology scaling. We use TORCH
to study how segmentation should change with technology
scaling more systematically. Fig. 12 shows the segmentations
produced by TORCH for the five technology nodes and their
average segment lengths. Note that average segment length is
reduced from 2.21 at 130 nm to 1.89 at 32 nm. These results
corroborate the observation in [11].

V. Alternative Ways of Using TORCH

TORCH can be used to optimize other interconnect archi-
tecture parameters, such as switch box width and switch and
connection box flexibilities.

A. Switch Box Width

Here we demonstrate how TORCH can be used to select
the switch box/channel width. Fig. 13 plots the average
interconnect delay and power obtained by TORCH in 45 nm
technology with α = β = 1 for different switch box widths

Fig. 13. Delay, power, and area improvements vs. the baseline architecture
for different switch box width.

together with the corresponding estimates of the FPGA area
relative to the FPGA with Virtex-like segmentation. Note
that average delay first drops from 0.87 at Wtb = 40 to
0.76 at Wtb = 60, then remains roughly unchanged. This is
because when Wtb is too small, many nets are routed in a
highly suboptimal manner resulting in increased delay. As Wtb

increases, nets are more optimally routed, which decreases
delay. This decrease in delay diminishes as Wtb becomes too
large. Power also first decreases as Wtb is increased, but then
begins to increase as Wtb becomes too large because of the
increase in parasitic loading due to the increase in area and
number of tracks. To optimize power and delay, the graph
suggests that Wtb ≈ 60 is the best choice.

B. Power Delay Tradeoff

The performance metric used in TORCH allows for a
tradeoff between power and delay. Fig. 14 plots the average
segment length for different choices of α and β in 45 nm
technology. As expected, average segment length increases as
delay is emphasized more than power. The average power and
delay are plotted in Fig. 15.

C. Set of Segment Lengths

In the previous results we limited the set of allowable seg-
ment length to {1, 2, 3, 6}. Is there a benefit from using more
segment types? To explore this question we increased the size
of the set of allowable segment lengths to {1, 2, 3, 4, 5, 6, 7, 8}
and ran TORCH with α = β = 1 and 45 nm technology. Fig. 16
shows the resulting segmentation and the reduction in delay
and power relative to the FPGA with optimized segmentation
assuming segment length set {1, 2, 3, 6}. Note that on average
delay is improved by 7% and power is improved by 6%. The



1520 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

Fig. 14. Routing channel segmentation results for different α and β at 45 nm
technology node. (a) Segmentation results. (b) Average segment length.

Fig. 15. Delay and power improvements vs. the baseline architecture for
different α and β at 45 nm technology.

Fig. 16. Reductions in delay and power using segment length set
{1, 2, . . . , 8} relative to the FPGA with optimized segmentation for segment
length set {1, 2, 3, 6}.

estimated FPGA area is, however, increased by a factor of
0.14. The run time of the tool is also significantly longer.

VI. Parallelizing TORCH

In the previous section, we presented results using TORCH
with small benchmark designs. In spite of performing infre-
quent placements and incremental routing, the run time is
still too long for TORCH to be usable on a large number
of large, state-of-the-art FPGA designs. This problem can be
addressed by parallelizing the EvaluateCost() subroutine
of TORCH, which is the most computationally intensive part.
Because this subroutine is executed independently for each
design, parallelization is quite straightforward and results

Fig. 17. Flow diagram of parallel implantation of the EvaluateCost
function in TORCH.

in a speed up on the order of the number of benchmark
designs used (see Fig. 17). In this section we report on
experiments with parallel implementation of TORCH on the
Stanford computer cluster Bio-X2, which consists of 276 Dell
PowerEdge 1950 compute nodes each with dual-socket quad-
core processors and 16 GB of memory. Our experiment only
uses a small number of these nodes.

We first used the parallel implementation of TORCH with
the 20 largest MCNC benchmark designs and the same param-
eters and conditions given in Section IV. The run time of the
parallel implementation was 14.63 times faster than the serial
implementation using only one node.

We then used this parallel implementation with the 20
largest MCNC designs to validate our choice of the simu-
lated annealing parameters used in the previous section. We
increased the number of moves at each annealing temperature
(denoted by Iter) by a factor of 10 to 2000 × Wtb. We found
the difference in the final metric value between Iter = 200 and
Iter = 2000 to be about 3%.

We compared two different annealing schedules, the linear
schedule used in the experiments of Section IV and the
adaptive cooling schedule in [37], which automatically adjusts
the temperature at each step based on the energy difference
between the two states. We found the difference between the
final metric values using these two cooling schedules to be
within 7%.

To test the effectiveness of the TORCH tool on large
benchmark designs, we used the parallelized TORCH with
eight designs synthesized with the Altera QUIP tool. These
designs are three to four times larger than the largest MCNC
benchmark. We choose a 100 × 100 array size and the SB
width of 72 to accommodate the larger design size. For the
Virtex-like segmentation, we assume 28 single, 26 double,
10 length-3, and 8 length-6 track bundles. The rest of the
FPGA architecture parameters are the same as in Table II. We
performed experiments with uniform all one segmentation to
determine the minimum channel width needed for each design.
The experiments used eight nodes of the computer cluster
and run time of 267 min. The speedup over a single node
implementation is about 9.5.

Fig. 18 shows the improvement in interconnect power and
delay for the eight designs using the TORCH segmentation,
relative to the Virtex-like segmentation for 45 nm technology
and α = β = 1, i.e., equal weight on delay and power in



LIN et al.: EXPLORING FPGA ROUTING ARCHITECTURE STOCHASTICALLY 1521

Fig. 18. Improvements in power and delay relative to Virtex-like segmenta-
tion for eight larger designs.

Fig. 19. (a) Segmentation results for different technology nodes. (b) Average
segment length for different technology nodes. (for large QUIP designs).

the performance metric. The average reduction in delay and
power relative to the Virtex-like segmentation are 27% and
23%, respectively, and its segmentation is shown in Fig. 19.

As discussed in [11], the average segment length in FPGA
routing channel tends to decrease with technology scaling
due to the significant increase in wire parasitics relative to
transistor parasitics with technology scaling. Our results in
Sections IV confirm this observation. To further investigate
this, we used TORCH to study how segmentation should
change with technology scaling for larger designs. Fig. 19
shows the segmentations produced by TORCH for the five
technology nodes and their average segment lengths. Note that
average segment length is reduced from 2.18 at 130 nm to 1.88
at 32 nm.

The segmentation results in Fig. 19 is quite different from
that in Fig. 12, which clearly shows the importance of choos-
ing suitable benchmark suite when designing FPGA routing
architecture. Moreover, as shown in both figures, the choice of
technology nodes has a significant impact on the final results.
All these observations enforce our belief that all contributing
factors of FPGA architecture design should be considered in
a systematic way in order to achieve high performance in an
FPGA, where our proposed stochastic approach can potentially
be a good solution in exploring large design space.

VII. Conclusion

As device technology scales to tens of nanometers, a single
FPGA chip will soon contain billions of transistors, which
makes optimally designing FPGA increasingly difficult. To
meet such a challenge, we believe a systematic strategy is
needed. This paper studies the idea of using a stochastic
method to explore FPGA routing architecture. Specifically,
TORCH uses simulated annealing to quickly locate near-
optimal solutions in designing FPGA channel segmentation
and switch patterning for a particular island-style FPGA ar-
chitecture without exhaustively enumerating all design points.
TORCH, in principle, can be readily adapted to any FPGA
architecture, any placement and routing tool, and any perfor-
mance metric based on placed and routed benchmark designs.
Its effectiveness, however, may vary and special techniques
may be needed to reduce the overall run time.
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